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Introduction

Monte Carlo (MC) methods may refer to any method in statistical
inference or numerical analysis where simulation is used. MC meth-
ods encompass a vast set of computational tools in modern applied
statistics. MC methods can be applied to

I estimate parameters of the sampling dist. of a statistic, mean
squared error(MSE), percentiles, or other quantities of interest.

I assess the coverage probability for confidence intervals, an em-
pirical Type I error rate of a test procedure;

I estimate the power of a test;

I compare the performance of different procedures for a given
problem.

The methods covered in this chapter use repeated sampling from a
given probability model, sometimes called parametric bootstrap, to
investigate this uncertainty.



MC Methods for Estimation

Suppose X1, . . . , Xn is a random sample from the X dist.

I An estimator θ̂ for a parameter θ is an n variate function of the
sample.

θ̂ = θ̂(X1, . . . , Xn)

I Functions of the estimator θ̂ are therefore n-variate functions
of the data.

For simplicity, let x = (x1, . . . , xn)T ∈ Rn, and let x(1), x(2), . . . ,
denote a sequence of independent random samples generated from
the dist. of X.

I Random variates from the sampling dist. of θ̂ can be generated
by repeatedly drawing independent random samples x(j) and

computing θ̂(j) = θ̂(x
(j)
1 , . . . , x

(j)
n ) for each sample.



Example 6.1(Basic MC estimation)

Suppose thatX1, X2 are iid from a standard normal dist. Estimate
the mean difference E|x1 − x2|.

To obtain a MC estimate of θ = E[g(X1, X2)] = E|X1

−X2| based on m replicates, generate random samples x(j) = (

x
(j)
1 , x

(j)
2 ) of size 2 from the standard normal dist., j = 1

, . . . ,m. Then compute the replicates θ̂(j) = gj(x1, x2) = |x(j)
1

− x(j)
2 |, j = 1, . . . ,m, and the mean of the replicates

θ =
1

m

∑m

i=1
θ̂(j) = g(X1, X2) =

1

m

∑m

i=1
|x(j)

1 − x
(j)
2 |

m < - 1000; g < - numeric(m)

for (i in 1 : m) {x<-rnorm (2); g[i]<-abs(x[1]-x[2])}

est < - mean(g); est

[1]1.128402

By integration that E|X1−X2| = 2/
√
π = 1.128379 and V ar(|X1−

X2|) = 2 − 4/π. Thus the standard error of θ̂
√

(2− 4/π)/m =
0.02695850.



The standard error of a mean x of a sample size n is
√
var(x)/n.

When the dist. of X is unknown we can substitute for F the em-
pirical dist. Fn of the sample x1, . . . , xn. The plug-in estimate of
the variance of X is

v̂ar(x) =
1

n

n∑
i=1

(xi − x)2

v̂ar(x) is the population variance of the finite pseudo population
x1, . . . , xn with cdf Fn. The corresponding estimate of the standard
error of x is

ŝe(x) =
1√
n
{ 1

n

∑n

i=1
(xi − x)2}1/2 =

1

n
{
∑n

i=1
(xi − x)2}1/2

Using the unbiased estimator of V ar(X) we have

ŝe(x) =
1√
n
{ 1

n− 1

∑n

i=1
(xi − x)2}1/2

In Example 6.1 (sample size m), estimate of standard error of θ̂ is

sqrt(sum((g-mean(g))^2))/m

#sd(g)/sqrt(m) #for unbiased estimator



Estimation of MSE

MC methods can be applied to estimate the MSE of an estimator.
Recall that the MSE of an estimator θ̂ for a parameter θ is defined by
MSE (θ̂) = E[(θ̂−θ)2]. If m (pseudo) random samplesx(1), . . . , x(m)

are generated from the dist. of X, then a MC estimate of the MSE
of θ̂ = θ̂(x1, . . . , xn) is

M̂SE =
1

m

∑m

j=1
(θ̂(j) − θ)2

where θ̂(j) = θ̂(x(j)) = θ̂(x
(j)
1 , . . . , x

(j)
2 ).

Example 6.2 (Estimating the MSE of a trimmed mean)

A trimmed mean is sometimes applied to estimate the center of a
continuous symmetric dist. that is not necessarily normal. In this
example, we compute an estimate of the MSE of a trimmed mean.
Suppose that X1, . . . , Xn is a random sample and X(1), . . . ,
X(n) is the corresponding ordered sample.



The trimmed sample mean is computed by averaging all but the
largest and smallest sample observations.

Generally, the kth level trimmed sample mean is defined by

X̂|(k−1)| =
1

n− 2k

∑n−k

i=k+1
x(i).

Obtain a MC estimate of the MSE (X [−1]) of the first level trimmed
mean assuming that the sampled dist. is standard normal.

The center of the dist. is 0 and the target is θ = E[X] =
E[X [−1]] = 0. Denote the first level trimmed sample mean by T . A
MC estimate of MSE(T ) based on m replicates:
1. Generate the replicates T (j), j = 1 . . . ,m by repeating:

(a) Generate x1
(j), . . . , xn

(j), iid from the dist. of X.

(b) Sort x1
(j), . . . , xn

(j) in increasing order, to obtain x(1)
(j) . . . x(n)

(j).

(c) Compute T (j) = 1
n−2

∑n−1
i=2 x

(j)
(i) .

2. Compute M̂SE(T )= 1
m

∑m
j=1(T (j) − θ)2= 1

m

∑m
j=1(T (j))2



Then T(1), . . . , T(m) are i.i.d. , and we are computing the sample

mean estimate M̂SE(T ) of MSE(T ).

n <- 20

m <- 1000

tmean <- numeric(m)

for (i in 1:m) {

x <- sort(rnorm(n))

tmean[i] <- sum(x[2:(n -1)]) / (n-2)

}

mse <- mean(tmean ^2)

> mse

[1] 0.05176437

> sqrt(sum((tmean - mean(tmean ))^2)) / m #se

[1] 0.007193428

The estimate of MSE in this run is approximately 0.052 (ŝe = 0.007).
For comparison, the MSE of the sample mean X is V ar(X)/n,
which is 1/20 = 0.05 in this example.



Note that the median is actually a trimmed mean; it trims all but
one or two of the observations.

n < - 20

m < - 1000

tmean < - numeric(m)

for (i in 1 : m ) {

x < - sort (rnorm(n))

tmean[i] < - median(x)

}

mse < - mean (tmean ^ 2 )

> mse

[1] 0.07483438

> sqrt(sum((tmen -mean(tmean ))^2))/m#se

[1] 0.008649554

The estimate of MSE for the sample median is approximately 0.075
and ŝe(M̂SE) = 0.0086.



Example 6.3 (MSE of a trimmed mean, cont.)

Compare the MSE of level-k trimmed means for the standard normal
and a ‘contaminated’ normal dist. The contaminated normal dist.
is a mixture

pN(0, σ2 = 1) + (1− p)N(0, σ2 = 100)

Write a function to estimate MSE(X [−k]) for different k and p.

Estimates of MSE for the kth Level Trimmed Mean in Exp6.3 (n = 20)
Normal p = 0.95 p = 0.90

k nM̂SE nŝe nM̂SE nŝe nM̂SE nŝe

0 0.976 0.140 6.229 0.140 11.485 0.140
1 1.019 0.143 1.954 0.143 4.126 0.143
2 1.009 0.142 1.304 0.142 1.956 0.142
3 1.081 0.147 1.168 0.147 1.578 0.147
4 1.048 0.145 1.280 0.145 1.453 0.145
5 1.103 0.149 1.395 0.149 1.423 0.149
6 1.316 0.162 1.349 0.162 1.574 0.162
7 1.377 0.166 1.503 0.166 1.734 0.166
8 1.382 0.166 1.525 0.166 1.694 0.166
9 1.491 0.172 1.646 0.172 1.843 0.172



To generate the contaminated normal samples, first randomly select
σ according to the probability dist. P (σ = 1) = p;P (σ = 10) =
1− p.

rnorm can accept a vector of parameters for standard deviation. After

generating n values for σ, pass this vector as sd argument to rnorm.

n<-20; K <-n/2-1; m<-1000; mse <-matrix(0,n/2,6)

trimmed.mse <- function ( n,m,k,p ) {

# Mc est of mse for k-level trimmed mean of

# contaminated normal pN (0,1) + (1-p) N (0 ,100)

t mean < - numeric( m )

for (i in1 : m) {

sigma <-sample(prob=c(p,1-p)); x<-sort(rnorm (n,0,sigma))

t mean [i] < - sum (x[(k+1):(n-k)])/(n-2*k)

mse.est < - mean(tmean ^2)

se.mse < - sqrt(mean((tmean -mean(tmean ))^2)) /sqrt(m)

return(c(mse.est ,se.mse))

}

for ( k in 0 : K ) {

mse [k+1,1:2 ] < - trimmed.mse( n=n,m=m,k=k,p=1.0 )

mse [K+1,3:4 ] < - trimmed.mse( n=n,m=m,k=k,p=.95 )

mse [k+1,5:6 ] < - trimmed.mse( n=n,m=m,k=k,p=.9 )}



Estimating a confidence level

One type of problem that arises frequently in statistical applications
is the need to evaluate the cdf of the sampling dist. of a statistic,
when the density function of the statistic is unknown or intractable.

Many commonly used estimation procedures are derived under
the assumption that the sampled population is normally distributed.
In practice, it is often the case that the population is non-normal
and the true dist. may be unknown or intractable.

Example: If (U, V ) is a confidence interval (CI) estimate for an
unknown parameter θ, then U and V are statistics with dist. that
depend on the dist. FX of the sampled population X. The con-
fidence level (CL) is the probability that the interval (U, V ) covers
the true value of the parameter θ. Evaluating the CL is therefore an
integration problem.

I Sample-mean MC approaches to evaluating an integral
∫
g(x)dx

do not require that g(x) is specified. It is only necessary that
the sample from the dist. g(X) can be generated.



Example 6.4 (Confidence interval for variance)

Use MC methods to estimate the true level when the normal theory
CI for variance is applied to non-normal data. If X1, . . . , Xn is a
random sample from a N(µ, σ2) dist., n ≥ 2, and S2 is the sample
variance, then

V =
(n− 1)S2

σ2
∼ χ2(n− 1). (6.1)

A one side 100(1 − α)% CI is (0, (n − 1)S2/χ2
α(n − 1)). If the

sampled population is normal with variance σ2, then the probability
that the CI contains σ2 is 1− α.

The calculation of 95% upper confidence limit (UCL) for a random
sample size n = 20 from N(0, σ2 = 4):

n <- 20; alpha < - .05

x < - rnorm (n,mean=0,sd = 2 )

UCL < - (n-1)*var(x)/qchisq(alpha ,df=n-1)

Several runs produce UCL = 6.628, 7.348, 9.621, etc. All contain
σ2 = 4. If the sampling and estimation is repeated a large number
of times, approximately 95% of the intervals should contain σ2.



Monte Carlo experiment to estimate a confidence level

I Empirical CL is an estimate of the CL obtained by simulation.

I Repeat the steps above a large number of times, and compute
the proportion of intervals that contain the target parameter.

Suppose that X ∼ Fx: r.v. of interest and θ: the target parameter.

1. For each replicate, indexed j = 1,. . . , m:

(a) Generate the jth random sample, X1
(j), . . . , Xn

(j).
(b) Compute the CI Cj for the jth sample.
(c) Compute yj = I(θ ∈ Cj) for the jth sample.

2. Compute the empirical CL ȳ= 1
m

∑m
j=1 yj .

The estimator ȳ is a sample proportion estimating the true CL 1−α∗,
so V ar(ȳ) = (1 − α∗)α∗/m and an estimate of standard error is
ŝe(ȳ) =

√
(1− ȳ)ȳ/m.



Example 6.5 (MC estimate of confidence level)

Refer to Example 6.4. Here, µ = 0, σ = 2, n = 20,m = 1000
replicates, and α = 0.05. The sample proportion of intervals that
contain σ2 = 4 is a MC estimate. This type of simulation can be
conveniently implemented by using replicate function.

> round(rbind(table(x)/n, p, se),3)

n <- 20; alpha <- .05

UCL <- replicate (1000, expr = {

x <- rnorm(n, mean = 0, sd = 2)

(n-1) * var(x) / qchisq(alpha , df = n-1)} )

sum(UCL > 4) # count the number of intervals that contain sigma^2 = 4

> mean (UCL > 4 ) # or compute the mean to get the CL

[1] 0.956

The result is that 956 intervals satisfied (UCL > 4), so the empirical
confidence level is 95.6%. The result will vary but should be close
to the theoretical value, 95%. The standard error of the estimate is
(0.95(1− 0.95)/1000)1/2 .

= 0.00689.



R note 6.1
In replicate function, the lines to be repeatedly executed are
enclosed in braces { }. Alternately, the expression argument (expr)
can be a function call:

> round(rbind(table(x)/n, p, se),3)

calcCI <- function(n, alpha) {

y <- rnorm(n, mean = 0, sd = 2)

return ((n-1) * var(y) / qchisq(alpha , df = n-1))}

UCL <-replicate (1000, expr=calcCI(n=20, alpha =.05))

The interval estimation procedure based on (6.1) for estimating vari-
ance is sensitive to departures from normality, so the true CL may
be different from the stated CL when data are non-normal.

The true CL depends on the cdf of S2. The CL is the probability
that the interval (0, (n− 1)S2/χ2

α) contains the true value of σ2,

P (
(n− 1)S2

χα2
> σ2) = P (S2 >

σ2χα
2

n− 1
) = 1−G(

σ2χα
2

n− 1
)

where G(·) is the cdf of S2.



If the sampled population is non-normal, we have the problem of
estimating the cdf

G(t) = P (S2 ≤ cα) =

∫ cα

0
g(x)dx,

where g(x) is the (unknown) density of S2 and cα = σ2χα
2/(n −

1). An approximate solution can be computed empirically using
Monte Carlo integration to estimate G(cα). The estimate of G(t) =
P (S2 ≤ t) =

∫ t
0 g(x)dx, is computed by MC integration. It is not

necessary to have an explicit formula for g(x), provided that we can
sample from the dist. of g(X).

Example 6.6 (Empirical confidence level)

In Example 6.4, what happens if the sampled population is
non-normal? For example, suppose that the sampled population is
χ2

(2), which has variance 4, but is distinctly no n-normal. We repeat

the simulation, replacing the N(0, 4) samples with χ2
(2) samples.



n < - 20; alpha < - .05

UCL < - replicate (1000, expr= {

x < - rchisq(n,df=2 )

(n-1)*var(x)/qchisq(alpha ,df=n -1)})

> sum (UCL > 4); mean( UCL > 4)

[1] 773

[1] 0.773

In this experiment, only 773 or 77.3% of the intervals contained
the population variance, which is far from the 95% coverage under
normality.

Remark 6.1
The MC approach here is sometimes called parametric bootstrap.
In ‘parametric’ bootstrap, the pseudo random samples are
generated from a given probability dist. In the ‘ordinary’ bootstrap,
the samples are generated by resampling from an observed sample.
methods.



Monto Carlo Methods for Hypothesis Tests

Suppose that we wish to test a hypothesis concerning a parameter
hat lies in a parameter space Θ. The hypotheses of interest are

H0 : θ ∈ Θ0 vs H1 : θ ∈ Θ1

where Θ = Θ0 ∪Θ1. Two types of error can occur:
I Type I error: if the null hypothesis is rejected when in fact the

null hypothesis is true.
I Type II error: if the null hypothesis is not rejected when in fact

the null hypothesis is false.

The prob. of rejecting the null hypothesis depends on the true value
of θ, denoted by π(θ). The significance level of a test is α, which is
an upper bound on the prob. of Type I error, i.e.,

α = supθ∈Θ0
π(θ)

Prob. of Type I error is the conditional prob. that the null hypothesis
is rejected given that H0 is true. If the test procedure is replicated a
large number of times under the null hypothesis, the observed Type
I error rate should be at most (approximately) α.



6.3.1 Empirical Type I error rate

An empirical Type I error rate can be computed by a MC experiment.
The empirical Type I error rate is the sample proportion of significant
test statistics among the replicates.

1. For each replicate, indexed by j = 1, . . . ,m :

(a) Generate the jth random sample x1
(j), . . . , xn

(j) from the null
dist.

(b) Compute the test statistic Tj from the jth sample.
(c) Record the test decision Ij = 1 if H0 is rejected at significance

level α and otherwiseIj = 0.

2. Compute the proportion of significant tests 1
m

∑m
j=1 Ij . This

proportion is the observed Type I error rate.

The observed Type I error rate, is a sample proportion. If we denote
the observed Type I error rate by p̂, then an estimate of se(p̂) is

ŝe(p̂) =

√
p̂(1− p̂)

m
≤ 0.5√

m



Example 6.7 (Empirical Type I error rate)

Suppose that X1, . . . , X20 is a random sample from a N(µ, σ2).
Test H0 : µ = 500 H1 : µ > 500 at α = 0.05. Under H0,

T ∗ =
X − 500

S/
√

20
∼ t(19),

Use MC method to compute an empirical probability of Type I error
when σ = 100, and check that it is approximately equal to α = 0.05,
basing the test decisions on the p-values returned by t.test.

n <- 20; alpha <- .05; mu0 <- 500

sigma <- 100; m <- 10000 #number of replicates

p <- numeric(m) #storage for p-values

for (j in 1:m) {

x <- rnorm(n, mu0 , sigma)

ttest <- t.test(x, alternative = "greater", mu = mu0)

p[j] <- ttest$p.value }

p.hat <-mean(p <alpha); se.hat <-sqrt(p.hat*(1-p.hat)/m)

print(c(p.hat , se.hat))

[1] 0.050600000 0.002191795

The observed Type I error rate is 0.0506, and the standard error of
the estimate is approximately

√
0.05× 0.95/m = .0.0022.



Example 6.8 (Skewness test of normality)

Investigate whether a test based on the asymptotic dist. of the
skewness statistic achieves the nominal significance level α under
the null hypothesis of normality. The skewness

√
β1 of a r.v. X is

√
β1 =

E[(x− µx)]3

σx3

where µx = E[X] and σX
2 = V ar(X). A dist. is symmetric if√

β1 = 0, positively skewed if
√
β1 > 0, and negatively skewed if√

β1 < 0. The sample coefficient of skewness
√
b1 defined as

√
b1 =

1
n

∑n
i=1 (xi − x)3

( 1
n

∑n
i=1(xi − x)2)3/2

If the dist. of X is normal, then is
√
b1 asymptotically normal with

mean 0 and variance 6/n. Normal dist.s are symmetric, and the
hypothesis of normality is rejected for large values of |

√
b1|.



The hypotheses are

H0 :
√
β1 = 0; H1 :

√
β1 6= 0.

where the sampling dist. of the skewness statistic is derived under
the assumption of normality.

I However, the convergence of
√
β1 to its limit dist. is rather

slow and the asymptotic dist. is not a good approximation for
small to moderate sample sizes.

Assess the Type I error rate for a skewness test of normality at
α = 0.05 based on the asymptotic dist. of

√
β1 for sample sizes n

= 10, 20, 30, 50, 100, and 500. The vector of critical values cv for
each n are computed under normal:

n <- c(10, 20, 30, 50, 100, 500) #sample sizes

cv <- qnorm (.975, 0, sqrt(6/n)) #crit. values for each n

asymptotic critical values:

n 10 20 30 50 100 500

cv 1.5182 1.0735 0.8765 0.6790 0.4801 0.2147



The asymptotic dist. of
√
b1 does not depend on the mean and vari-

ance of the sampled normal dist., so the samples can be generated
from the standard normal dist. If the sample size is n[i] then H0

is rejected if
√
b1 > cv[i].

First write a function to compute the sample skewness statistic.

sk <- function(x) {

#computes the sample skewness coeff.

xbar <- mean(x); m3 <- mean((x - xbar )^3)

m2 <- mean((x - xbar )^2); return( m3 / m2^1.5 )}

#n is a vector of sample sizes

#we are doing length(n) different simulations

p.reject <- numeric(length(n)) #to store sim. results

m <- 10000 #num. repl. each sim.

for (i in 1: length(n)) {sktests <-numeric(m) #test decisions

for (j in 1:m) { x <- rnorm(n[i])

#test decision is 1 (reject) or 0

sktests[j] <- as.integer(abs(sk(x))>= cv[i] )}

p.reject[i] <- mean(sktests) #proportion rejected}

> p.reject

[1] 0.0129 0.0272 0.0339 0.0415 0.0464 0.0539



With m = 10000 replicates the standard error of the estimate is
approximately

√
0.05× 0.95/m = 0.0022. The results of the simu-

lation suggest that the asymptotic normal approximation for of
√
b1

is not adequate for n ≤ 50, and questionable as large as n = 500.
For finite samples one should use

V ar(
√
b1) =

6(n− 2)

(n+ 1)(n+ 3)

Repeating the simulation with

cv < - qnorm (.975,0, sqrt(6*(n-2)/((n+1)*(n+3)))

> round (cv ,4)

[1]1.1355 0.9268 0.7943 0.6398 0.4660 0.2134

n 10 20 30 50 100 500

estimate 0.0548 0.0515 0.0543 0.0514 0.0511 0.0479

These estimates are closer to the nominal level α = 0.05.



6.3.2 Power of a Test

The power of a test is the power function π : Θ → [0, 1], which
is the prob. π(θ) of rejecting H0 given that the true value of the
parameter is θ. Thus, for a given θ ∈ Θ1, the prob. of Type II error
is 1− π(θ1). Ideally, we would prefer a test with low prob. of error.
Type I error is controlled by the significance level α. Thus,

I when comparing tests for the same hypotheses at same signifi-
cance level, we are interested in comparing power of the tests.

In general the comparison is not one problem but many; the power
π(θ1) of a test under the alternative hypothesis depends on the
particular value of the alternative θ1.

If the power function of a test cannot be derived analytically, the
power of a test against a fixed alternative θ ∈ Θ1 can be estimated
by MC methods. The power function is defined for all θ ∈ Θ, but
the significance level α controls π(θ) ≤ α for all θ ∈ Θ0.



MC estimate of the power of a test against a fixed alternative

1. Select a particular value of the parameter θ ∈ Θ.

2. For each replicate, indexed by j = 1, . . . ,m:

(a) Generate the jth random sample x1
j , . . . , xn

j under the condi-
tions of the alternative θ = θ1.

(b) Compute the test statistic Tj from the jth sample.
(c) Record the test decision: set Ij = 1 if H0 is rejected at signifi-

cance levelα, and otherwise set Ij = 0.

3. Compute the proportion of significant tests π̂(θ1) = 1
m

∑m
j=1 Ij .

Example 6.9 (Empirical power)

Use simulation to estimate power and plot an empirical power
curve for the t-test in Example 6.7. (For a numerical approach that
does not involve simulation, see the remark 6.2.)

To plot the curve, we need the empirical power for a sequence
of alternatives θ along the horizontal axis. The outer for loop
varies the points θ(µ) and the inner replicate loop estimates the
power at the current θ.



n <- 20; m <- 1000; mu0 <- 500

sigma <- 100; mu <- c(seq(450, 650, 10)) #alternatives

M <- length(mu); power <- numeric(M)

for (i in 1:M) {

mu1 <- mu[i]; pvalues <- replicate(m, expr = {

#simulate under alternative mu1

x <- rnorm(n, mean = mu1 , sd = sigma)

ttest <- t.test(x,alternative = "greater", mu = mu0)

ttest$p.value } )

power[i] <- mean(pvalues <= .05)}

The estimated power π̂(θ) values are now stored in the vector power.
Next, plot the empirical power curve, adding vertical error bars at
π̂(θ)± ŝe(π(θ)) using the errbar function in Hmisc package.

library(Hmisc) #for errbar

plot(mu, power ); abline(v = mu0 , lty = 1)

abline(h = .05, lty = 1)

#add standard errors

se <- sqrt(power * (1-power) / m)

errbar(mu , power , yplus = power+se, yminus = power -se,

xlab = bquote(theta ))

lines(mu , power , lty =3); detach(package:Hmisc)
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Fig.6.1: Empirical power

π̂(θ)± ŝe(π(θ)) for the t-test

of H0 : θ = 500 vs H1 : θ >

500 in Example 6.9.

Remark 6.2
The non-central t dist. arises in power calculations for t-tests. The
general non-central t with parameters (ν, δ) is
T (ν, δ) = (Z + δ)/

√
V/ν where Z ∼ N(0, 1) and V ∼ χ2(ν) are

independent.
Suppose X1, X2, . . . , Xn is a random sample from N(µ, σ2),

and the t-statistic T = (X − µ0)/(S/
√
n) is applied to test

H0 : µ = µ0. Under H0, T follows the central t(n− 1), but if
µ = µ0, T follows the non-central t(n− 1, δ), where non-centrality
parameter δ = (µ− µ0)

√
n/σ. A numerical approach to evaluating

the cdf of t(n− 1, δ), is R function pt. Also see power.t.test.



Example 6.10 (Power of the skewness test of normality)

The skewness test of normality was described in Example 6.8. Here,
we estimate it by simulation against a contaminated normal dist.
alternative in Example 6.3, which is

(1− ε)N(µ = 0, σ2 = 1) + εN(µ = 0, σ2 = 100), 0 ≤ ε ≤ 1

When ε = 0 or ε = 1, the dist. is normal, but it is non-normal for
0 < ε < 1. We can estimate the power of the skewness test for a
sequence of alternatives indexed by ε and plot a power curve. We
use α = 0.1 and the sample size n = 30.

alpha <- .1; n <- 30; m <- 2500

epsilon <- c(seq(0, .15, .01), seq(.15, 1, .05))

N <- length(epsilon ); pwr <- numeric(N)

#critical value for the skewness test

cv <- qnorm(1-alpha/2, 0, sqrt(6*(n-2) / ((n+1)*(n+3))))

for (j in 1:N) { #for each epsilon

e <- epsilon[j]; sktests <- numeric(m)



for (i in 1:m) { #for each replicate

sigma <- sample(c(1, 10), replace = TRUE ,

size = n, prob = c(1-e, e))

x <- rnorm(n, 0, sigma)

sktests[i] <- as.integer(abs(sk(x)) >= cv)

}

pwr[j] <- mean(sktests)

}

#plot power vs epsilon

plot(epsilon , pwr , type = "b",

xlab = bquote(epsilon), ylim = c(0 ,1))

abline(h = .1, lty = 3)

se <- sqrt(pwr * (1-pwr) / m) #add standard errors

lines(epsilon , pwr+se , lty = 3)

lines(epsilon , pwr -se , lty = 3)
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Fig.6.2: Empirical power π̂(ε) ±
ŝe(π(ε)) for the skewness test of nor-

mality against ε-contaminated nor-

mal scale mixture alternative in Ex-

ample 6.10.

Note that the power curve crosses the horizontal line corresponding
to α = 0.10 at both endpoints, ε = 0 and ε = 1 where the alterna-
tive is normally distributed. For 0 < ε < 1 the empirical power of
the test is greater than 0.10 and highest when ε is about 0.15.



6.3.3 Power comparisons

MC methods are often applied to compare the performance of dif-
ferent test procedures. Below we compare three tests of univariate
normality.

Example 6.11 (Power comparison of tests of normality)

Compare the empirical power of the skewness test of univariate
normality with the Shapiro-Wilk test and the energy test.

Let N denote the family of univariate normal dist.s. Then the
test hypotheses are

H0 : Fx ∈ N H1 : Fx /∈ N .

The Shapiro-Wilk test is based on the regression of the sample order
statistics on their expected values under normality, so it falls in the
general category of tests based on regression and correlation.



The approximate critical values of the statistic are determined by
a transformation of the statistic W to normality for sample sizes
7 ≤ n ≤ 2000. The Shapiro-Wilk test is implemented by the R
function shapiro.test.

The energy test is based on an energy distance between the
sampled dist. and normal dist., so large values of the statistic are
significant. The energy test for univariate and multivariate normality
is implemented in mvnorm.etest in energy package.

For this comparison we set significance level α = 0.1. The example
below compares the power of the tests against the contaminated
normal alternatives described in Example 6.3. The alternative is the
normal mixture denoted by

(1− ε)N(µ = 0, σ2 = 1) + εN(µ = 0, σ2 = 100), 0 ≤ ε ≤ 1



# initialize input and output

library(energy)

alpha <-.1; n<-30; m<-500 #try small m for a trial run

test1 <-test2 <-test3 <-numeric(m)

#critical value for the skewness test

cv <- qnorm(1-alpha/2, 0, sqrt(6*(n-2) / ((n+1)*(n+3))))

sim <- matrix(0, 11, 4)

# estimate power

for (i in 0:10) {

epsilon <- i * .1

for (j in 1:m) {

e <- epsilon; sigma <- sample(c(1, 10), replace = TRUE ,

size = n, prob = c(1-e, e))

x <- rnorm(n, 0, sigma)

test1[j]<-as.integer(abs(sk(x))>=cv)

test2[j]<-as.integer(shapiro.test(x)$p.value<=alpha)
test3[j]<-as.integer(mvnorm.etest(x,R=200)$p.value<=alpha)}

print(c(epsilon , mean(test1), mean(test2), mean(test3 )))

sim[i+1, ]<-c(epsilon ,mean(test1),mean(test2),mean(test3 ))}

detach(package:energy)



Standard error of the estimates is at most 0.5/
√
m = 0.01. Esti-

mates for empirical Type I error rate correspond to ε = 0 and ε = 1.
All tests achieve approximately α = 0.1 within one standard error,
so it is meaningful to compare the results for power.

# plot the empirical estimates of power

plot(sim[,1], sim[,2], ylim = c(0, 1), type = "l",

xlab = bquote(epsilon), ylab = "power")

lines(sim[,1], sim[,3], lty = 2)

lines(sim[,1], sim[,4], lty = 4)

abline(h = alpha , lty = 3)

legend("topright", 1, c("skewness", "S-W", "energy"),

lty = c(1,2,4), inset = .02)
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Fig.6.3: Empirical power of three

tests of normality against a contam-

inated normal alternative in Example

6.11 (n = 30, α = 0.1, se ≤ 0.01)



The simulation results suggest that the Shapiro-Wilk and energy
tests are about equally powerful against this type of alternative when
n = 30 and ε < 0.5. Both have higher power than the skewness test
overall and energy appears to have highest power for 0.5 6 ε 6 0.8.

Empirical Power of Three Tests of Normality against a Contaminated

Normal Alternative in Example 6.11 (n = 30, α = 0.1, se ≤ 0.01)
ε skewness test Shapiro-Wilk energy test

0.00 0.0984 0.1076 0.1064
0.05 0.6484 0.6704 0.6560
0.10 0.8172 0.9008 0.8896
0.15 0.8236 0.9644 0.9624
0.20 0.7816 0.9816 0.9800
0.25 0.7444 0.9940 0.9924
0.30 0.6724 0.9960 0.9980
0.40 0.5672 0.9828 0.9964
0.50 0.4424 0.9112 0.9724
0.60 0.3368 0.7380 0.8868
0.70 0.2532 0.4900 0.6596
0.80 0.1980 0.2856 0.3932
0.90 0.1296 0.1416 0.1724
1.00 0.0992 0.0964 0.0980



6.4 Application: Count Five Test for Equal Variance

The examples in this section illustrate the MC method for a simple
two sample test of equal variance. The two sample ‘Count Five’ test
for equality of variance counts the number of extreme points of each
sample relative to the range of the other sample.

I Suppose the means of the two samples are equal and the sample
sizes are equal.

I An observation in one sample is considered extreme if it is not
within the range of the other sample.

I If either sample has five or more extreme points, the hypothesis
of equal variance is rejected.



Example 6.12 (Count Five test statistic)

The computation of the test statistic is illustrated with a numerical
example. Compare the side-by-side boxplots in Fig.6.4 and observe
that there are some extreme points in each sample with respect to
the other sample.

x1 < - rnorm (20,0,sd=1); x2 < - rnorm (20,0,sd=1.5)

y < - c (x1 ,x2); group < -rep(1:2, each=length(x1))

boxplot(y∼group ,boxwex =.3,xlim =c(.5 ,2.5), main=" ")

points(group ,y)

# now identify the extreme points

> range(x1); range(x2)

[1] -2.7825761.728505

[1] -1.5989173.710319

> i < - which (x1<min(x2)); j < -which (x2>max(x1))

> x1[i]; x2[j]

[1] -2.782576

[1]2.035521 1.809902 3.710319
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Fig.6.4: Boxplots showing extreme

points for the Count Five statistic in

Example 6.12.

The Count Five statistic is the maximum number of extreme points,
max(1, 3), so the Count Five test will not reject the hypothesis of
equal variance. We only need the number of extreme points, and
the extreme count can be determined without reference to boxplot.

out1 <- sum(x1 > max(x2)) + sum(x1 < min(x2))

out2 <- sum(x2 > max(x1)) + sum(x2 < min(x1))

> max(c(out1 , out2))

[1] 3



Example 6.13 (Count Five test statistic, cont.)

Consider the case of two independent random samples from the same
normal dist. Estimate the sampling dist. of the maximum number
of extreme points, and find the 0.80, 0.90, and 0.95 quantiles of the
sampling dist.

maxout <- function(x, y) {

X <- x - mean(x)

Y <- y - mean(y)

outx <- sum(X > max(Y)) + sum(X < min(Y))

outy <- sum(Y > max(X)) + sum(Y < min(X))

return(max(c(outx , outy )))}

n1 <- n2 <- 20; mu1 <- mu2 <- 0

sigma1 <- sigma2 <- 1; m <- 1000

# generate samples under H0

stat <- replicate(m, expr={

x <- rnorm(n1 , mu1 , sigma1)

y <- rnorm(n2 , mu2 , sigma2)

maxout(x, y)})

print(cumsum(table(stat)) / m)

print(quantile(stat , c(.8, .9, .95)))



The empirical cdf and quantiles are

1 2 3 4 5 6 7 8 9 10 11

0.149 0.512 0.748 0.871 0.945 0.974 0.986 0.990 0.996 0.999 1.000

80% 90% 95%

4 5 6

The quantile function gives 6 as the 0.95 quantile. However, if
α = 0.05, 5 appears to be the best choice. The quantile function
is not always the best way to estimate a critical value. If quantile is
used, compare the result to the empirical cdf.

The ‘Count Five’ test criterion can be applied for independent
random samples when the r.v. are similarly distributed and sample
sizes are equal. (r.v. X and Y are called similarly distributed if Y has
the same distribution as (X−a)/b where a and b > 0 are constants.)
When the data are centered by their respective population means,
the Count Five test has significance level at most 0.0625.

In practice, the populations means are generally unknown and
each sample would be centered by subtracting its sample mean.
Also, the sample sizes may be unequal.



Example 6.14 (Count Five test)

Use MC methods to estimate the significance level of the test when
each sample is centered by subtracting its sample mean. Here again
we consider normal dist. The function count5test returns the value
1 (reject H0) or 0 (do not reject H0).

count5test <- function(x, y) {

X <- x - mean(x); Y <- y - mean(y)

outx <- sum(X > max(Y)) + sum(X < min(Y))

outy <- sum(Y > max(X)) + sum(Y < min(X))

# return 1 (reject) or 0 (do not reject H0)

return(as.integer(max(c(outx , outy)) > 5))}

n1 <- n2 <- 20; mu1 <- mu2 <- 0

sigma1 <- sigma2 <- 1; m <- 10000

tests <- replicate(m, expr = {

x <- rnorm(n1 , mu1 , sigma1)

y <- rnorm(n2 , mu2 , sigma2)

x <- x - mean(x) #centered by sample mean

y <- y - mean(y); count5test(x, y)} )

alphahat <- mean(tests ); print(alphahat)

> print(alphahat)

[1] 0.0565



If the samples are centered by the population mean, we should expect
an empirical Type I error rate of about 0.055, from our previous
simulation to estimate the quantiles of the maxout statistic. In
the simulation, each sample was centered by subtracting the sample
mean, and the empirical Type I error rate was 0.0565(se = 0.0022).

Example 6.15 (Count Five test, cont.)

Repeating the previous example, estimate the empirical Type I error
rate when sample sizes differ and the ‘Count Five’ test criterion is
applied. Each sample is centered by subtracting the sample mean

n1 <- 20; n2 <- 30; mu1 <- mu2 <- 0

sigma1 <- sigma2 <- 1; m <- 10000

alphahat <- mean(replicate(m, expr={

x <- rnorm(n1 , mu1 , sigma1 ); y <- rnorm(n2 , mu2 , sigma2)

x <- x - mean(x) #centered by sample mean

y <- y - mean(y); count5test(x, y)})); print(alphahat)

[1] 0.1064

The ‘Count Five’ criterion does not control Type I error at α ≤
0.0625 when the sample sizes are unequal. Repeating the simulation
with n1 = 20 and n2 = 50, the empirical Type I error rate was
0.2934.



Example 6.16 (Count Five, cont.)

Use MC methods to estimate the power of the Count Five test,
where the sampled dist. are N(µ1 = 0,σ2

1 = 1),
N(µ2 = 0, σ2 = 1.52), and the sample sizes are n1 = n2 = 20.

# generate samples under H 1 to estimate power

sigma1 < - 1

sigma2 < - 1.5

power < -mean (replicate(m,expr = {

x < - rnorm (20,0, sigma1 )

y < - rnorm (20,0, sigma2 )

count 5 test (x,y)

} ) )

> print (power)

[1]0.3129

The empirical power of the test is 0.3129(se ≤ 0.005) against the
alternative (σ1 = 1, σ2 = 1.5) with n1 = n2 = 20.
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